Name: \qquad Date: \qquad
Quiz name: AP Physics 2 - Test 11 - Modern Physics

An atomic particle of mass m moving at speed v is found to have wavelength λ. What is the

1. wavelength of a second particle with three times the speed and twice the mass?

A student performs the photoelectric effect experiment and obtains the data depicted in the accompanying graph of E_{km} (maximum kinetic energy) of photoelectrons v . the frequency of the photons. What is the approximate work function of this material?
2. Hint: What is the minimum energy of light needed to give the electron kinetic energy? $\mathrm{E}_{\mathrm{photon}}=\mathrm{hf}$
(A)
1.5 eV
(B) 2.0 eV
(C) 2.7 eV
(D) 3.5 eV

The diagram to the right shows the lowest four energy levels for an electron in a hypothetical atom. The electron is excited to the -1 eV level of the atom and transitions to the lowest energy state by emitting only two photons. Which of the following energies could not belong to either of the
3. photons?
(A) 2 eV
(B) 4 eV
(C) 5 eV
(D) 6 eV

The diagram shows light being emitted due to a transition from the $\mathrm{n}=3$ to the $\mathrm{n}=2$ level of a hydrogen atom in the Bohr model. If the transition were from the $n=3$ to the $n=1$ level instead, the
4. light emitted would have
(A) lower frequency
(B) longer wavelength
(C) greater speed
(D) greater energy

A very slow (not fast enough to apply special relativity) proton has its kinetic energy doubled. What 5. happens to the protons corresponding de Broglie wavelength
(A) the wavelength is decreased by a factor of $\sqrt{ } 2$
(B) the wavelength is halved
(C) the wavelength is increased by a factor of $\sqrt{ } 2$
(D) the wavelength is doubled.
6. the frequency of incident light?

The energy level diagram is for a hypothetical atom. A gas of these atoms initially in the ground state is irradiated with photons having a continuous range of energies between 7 and 10 electron volts.
7. One would expect photons of which of the following energies to be emitted from the gas?
(A) 1,2 , and 3 eV only
(B) 4,5 , and 9 eV only

A hypothetical atom has four energy states as shown. Which of the following transitions will produce
8. the photon with the longest wavelength?
(A) $\mathrm{n}=2$ to $\mathrm{n}=1$
(B) $\mathrm{n}=3$ to $\mathrm{n}=1$
(C) $n=4$ to $n=1$
(D) $\mathrm{n}=4$ to $\mathrm{n}=3$

In an experiment, light of a particular wavelength is incident on a metal surface, and electrons are emitted from the surface as a result. To produce more electrons per unit time but with less kinetic
9. energy per electron, the experimenter should do which of the following?
(A) Increase the intensity of the light.
(B) Decrease the intensity of the light.
(C) Increase the wavelength of the light.
(D) Decrease the wavelength of the light.

Which graph above shows the total photoelectric current versus the intensity of the light for a fixed
10. frequency above the cutoff frequency?

Which of the following lists types of electromagnetic radiation in order from least to greatest energy
11. per photon?
(A) ultraviolet, infrared, red, green, violet
infrared, red, green, violet, ultraviolet
ultraviolet, violet, green, red, infrared
In a nuclear reactor, uranium fissions into krypton and barium via the reaction.
12. What are the nucleon number A and atomic number Z of the resulting krypton nucleus?

In a nuclear reactor, uranium fissions into krypton and barium via the reaction.
13. How much mass is converted into the kinetic energy of the resulting nuclei?
(A) 1 amu

B 2 amu
zero

$$
\mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{141} \mathrm{Ba}+\mathrm{Kr}+3 \mathrm{n}
$$

(D) much less than 1 amu

The figure shows the wave functions $\Psi(x)$ of a particle moving along the x-axis. Which of the 14. following statements correctly interprets this graph?
(A) The particle is oscillating in charge from positive to negative.
(B) The lowest probability of finding the particle is at 3.0 nm .
(C) There is an equal probability of finding the particle at 1.5 nm as at 4.5 nm .
(D) The length of the particle is 4 nm .

A neutron is shot into a uranium atom, producing a nuclear reaction:
15. A neutron is shot into a uranium atom, producing a nuclear reaction:

The reaction products include two neutrons.
Combining uranium with a neutron is characteristic of nuclear
fusion.

The released energy in the reaction is equal to the kinetic
${ }_{92}^{235} \mathrm{U}+$ one neutron $\rightarrow{ }_{56}^{142} \mathrm{Ba}+{ }_{36}^{91} \mathrm{Kr}+$ neutrons++ released energy

The combined mass of uranium- 235 and a neutron will be greater than the sum of the mass of the reaction products.

A beam of ultraviolet light shines on a metal plate, causing electrons to be ejected from the plate as shown in the figure. The velocity of the ejected electrons varies from nearly zero to a maximum of $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. If the brightness of the beam is increased to twice the original amount, what will be the effect on the number of electrons leaving the metal plate and the maximum velocity of the
16. electrons?
\# of electrons: increases
vel of electrons: increases
\# of electrons: increases
vel of electrons: unchanged

\# of electrons: unchanged
vel of electrons: increases
\# of electrons: unchanged
 vel of electrons: unchanged

Scientists shine a broad spectrum of electromagnetic radiation through a container filled with gas toward a detector. The detector indicates that three specific wavelengths of the radiation were absorbed by the gas. The figure shows the energy level diagram of the electrons that absorbed the radiation. Which of the following correctly ranks the wavelengths of the absorbed electromagnetic
17. radiation?
(A) $A=B>C$
(B) $A>B=C$
(C) $A>B>C$
(D) $B>C>A$

James travels at high speed from the Earth to the star Alpha Centauri, four light years away. In
18. James's frame
(A) the trip takes more time than it does in the Earth's frame.
(B) James travels to Alpha Centauri over a length that is shorter than four light years.
clocks on Earth and on Alpha Centauri are synchronized.
(D) Alpha Centauri travels to James over a length that is shorter than four light years.
19. The definition of the Theory of Special Relativity is:
(A) The speed of light is the same in all inertial reference frames
(B) Nothing can travel faster than the speed of light
(C) The laws of physics are the same in all inertial reference frames

D An observer will witness effects such as length contraction, time dilation, and mass increasing of an object he/she is observing

A 30-year-old astronaut goes off on a long-term mission in a spacecraft that travels at speeds close to that of light. The mission lasts exactly 20 years as measured on Earth. Biologically speaking, at the 20. end of the mission, the astronaut's age would be
exactly 30 years.
B less than 50 years.
exactly 50 years.
exactly 25 years.
more than 50 years.
Observer A sees a ruler moving by in a relativistic rocket and measures its length to be L_{A}. Observer B moves along with the rocket and measures the length of the ruler to be L_{B}. What is true about
21. these two length measurements?
(A) $L_{A}<L_{B}$

D L_{A} coule be greater or smaller than L_{B} depending on the direction of the motion

You are moving at a speed $2 / 3$ c toward Randy when shines a light toward you. At what speed do you
22. see the light approaching you?

(A)	c
(B)	$c / 3$
(C)	$4 c / 3$
(D)	$2 c / 3$

23. According to the equation $E=m c^{2}$, an object turns into energy when it reaches the speed of light.

A proton and an alpha particle are both accelerated to the same final speed. If $\lambda_{\text {}}$ is the de
24. Broglie wavelength of the proton and λ_{a} is the de Broglie wavelength of the alpha particle, then
(A) $\lambda_{p}=\lambda_{a}$.
(B) $\lambda_{p}>\lambda_{a}$.
(C) $\lambda_{p}<\lambda_{a}$.

